

SmartScan UDP data message format

Document Ref:	3160-3006-A
Document Date:	11 May 2015
Classification:	Unclassified
Prepared by:	RT
Checked by:	КМЈ
Approved by:	CJN

This information herein is the property of Smart Fibres Ltd and is to be held strictly in confidence by the recipient. No copy is to be made without the written permission of Smart Fibres Ltd. Disclosures of any of the information herein is to be made only to such persons who need such information during the course of their engagement or employment at Smart Fibres Ltd or under the written authority of Smart Fibres Ltd.

Any patent applications, patents and/or design applications, registered designs or copyrights arising from or contained in the information herein, shall be considered the property of Smart Fibres Ltd and as such are subject to the aforementioned obligation of confidence on the recipient.

1 Overview	3
2 Peak data	
2.1 Operation	
2.2 Format	
3 Spectrum data	
3.1 Operation	
3.2 Format	

Document Revision History:

Issue	Issue Date	Change
Α	11 May 2015	New document

1 OVERVIEW

SmartScan sends data to a host PC via UDP messages over Ethernet. The data messages contain raw (spectral) or processed (FBG peak) data.

Many of the set up parameters as well as the peak values are expressed as "LASER channel numbers", these are multiplied by 128 to give a resolution that fits into a two byte value e.g. Channel 399 * 128 = 51072, whereas 2^{16} = 65536. Peak values are returned with a fractional portion of a whole channel when divided by 128 by the PC interface.

The wavelength range of the SmartScan is divided up into 400 channels spaced at about 100 pm (12.5 GHz).

Laser channel	Frequency (GHz)	Wavelength (nm)
0	191125.0	1568.567
1	191137.5	1568.465
2	191150.0	1568.362
:		
397	196087.5	1528.871
398	196100.0	1528.773
399	196112.5	1528.676

2 PEAK DATA

2.1 OPERATION

- SmartScan sends using UDP port 30071 to the configured client IP address on port 30002.
- PC should listen on port 30002 for messages.
- PC does not need to transmit messages. SmartScan does not respond to PC messages.
- PC should set the SmartScan's client IP address using HTTP interface to enable the data transfer.

2.2 FORMAT

UDP payload consists of a header of 36 bytes (see below) followed by N bytes (N/2 16 bit words) of data. A payload will contain an integer number of complete scans.

Example: Take an 8 grating, 4 channel system. Each sample block will contain 8 x 4 = 32 data words. Because of Ethernet size limitations, only up to 22 such sample blocks can be included in each UDP payload.

```
struct DATA
{
                                     // Total number of bytes
       u16
               usFrameSize;
                                     // Number of bytes in header/4 (9)
       u8
               ucHdrSizex4;
       u8
               ucFrameFormat;
                                     // eq 0x84, 8gratings, 4channels
               ulFrameCount:
                                     // Incremented number
       u32
                                     // UTC seconds H (scan time)
       u32
              ulTimeStampH;
       u32
               ulTimeStampL;
                                     // UTC second L (scan time)
               ulTimeCodeH:
                                     // UTC seconds (tx time)
       u32
                                     // sample interval in \muS, ie 400
       u16
               usTimeInterval:
               usSpare:
       u16
       u16
               usMinChannel:
                                     // First LASER step, eg 0
       u16
               usMaxChannel:
                                     // Last LASER step, eg 399
       u32
               ulStartFreq:
                                     // LASER start frequency
       u32
               ulStepFreq;
                                     // LASER step frequency
};
usFramesize
                        Total number of bytes.
```

Value: (data words * 2) + 36

ucHdrSizex4 Number of bytes in header / 4

Value: 9

ucFrameFormat MSB = number of gratings, LSB = number of channels. If MSB = 0 it is 16 gratings

Value: 0x84 = 8gr/4ch, 0x04 = 16gr/4ch

ulFrameCount Incremented frame count

Value: 1,2,3....

usTimeInterval Sample interval in µs, time for one scan

Value: 400 for 400 µs.

usSpare Not used

ulStartFreq Lowest LASER frequency (i.e. emission frequency at LASER channel 0)

Start frequency (THz) = (ulStartFreq >> 16) + ((ulStartFreq & 0xFFFF) / 1000)

ulStepFreq LASER step frequency (i.e. difference in emission frequency between LASER channels)

Step frequency (GHz) = (ulStepFreq >> 16) + ((ulStepFreq & 0xFFFF) / 1000)

Header is followed by 2 bytes of data per grating, per scan, representing the "channel number * 128", see section 1 Overview for more details. Note the offset from LASER channel 0 is set by maintenance

command 8, if not 0, then it must be added as an offset to the data values.

In our 8 grating, 4 channel example the data order would be:

Ch1Gr1, Ch1Gr2...Ch1Gr7, Ch1Gr8, Ch2Gr1, Ch2Gr2...Ch2Gr8, Ch3Gr1...Ch3Gr8, Ch4Gr1...Ch4Gr8 The data order is then repeated for the 2nd to 22nd samples.

The UTC time-stamp applies to the first sample in the message, the PC can generate timestamps for the remaining samples by adding multiples of the time interval.

3 SPECTRUM DATA

3.1 OPERATION

Data

- SmartScan sends using UDP port 30071 to the configured client IP address on port 30072.
- PC should listen on port 30072 for messages.
- PC does not need to transmit messages. SmartScan does not respond to PC messages.
- PC should set the SmartScan's client IP address using HTTP interface to enable the data transfer.

3.2 FORMAT

UDP payload consists of a header of 36 bytes (see below) followed by NrSteps number of words of scan data. Scan data are unsigned 16 bit words in network (big endian) format. Each unsigned word represents intensity of light at the output of the receiver circuit after gain has been applied.

struct SPECTRUM {

};

```
u16
       usFrameSize:
                             // Total number of bytes - 2
                             // Number of bytes in header/4 (9)
u8
       ucHdrSizex4:
u8
       ucFrameFormat;
                             // Scan source optical channel
u32
       ulFrameCount;
                             // Incremented on every message
                             // UTC seconds H (scan time)
u32
       ulTimeStampH:
u32
       ulTimeStampL:
                             // UTC seconds L (scan time)
u32
       ulTimeCodeH;
                             // UTC seconds (transmit time)
u16
       usTimeInterval;
                             // scan time interval µs
       usNrSteps;
                             // Steps per scan
u16
       usMinChannel;
                             // First LASER step
u16
                             // Last LASER step
u16
       usMaxChannel;
u32
       ulUnused1;
                             // 0
u32
       ulUnused2;
                             // 0
```